Prove the identity (4cos(2x))/(1+cos(2x)) = 4-2sec^2(x)

Write down the formulas involving cos2x and select the one which involves only cosine, this is because cosine (or derivations of it) is the only trigonometric function in this question. Substitute the chosen identity which is cos(2x) = 2cos^2(x)-1 into the left handside (LHS) of the equation which should give you: (8cos^2(x) - 4)/(2cos^2(x))   This can be cancelled down to 4-2/cos^2(x) Manipulate the right handside (RHS) of the equation by using the identity: sec(x) = 1/cos(x). This should give the RHS to be 4-2/cos^2(x) which = LHS. Make it obvious to the examiner that the sides of the are equal by equating them at the end so you don't lose marks!

Answered by Tegan N. Maths tutor

11853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How Do I Integrate cos(x) and sin(x) with higher powers?


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


What are the parameters of the Poisson distribution?


A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences