Prove the identity (4cos(2x))/(1+cos(2x)) = 4-2sec^2(x)

Write down the formulas involving cos2x and select the one which involves only cosine, this is because cosine (or derivations of it) is the only trigonometric function in this question. Substitute the chosen identity which is cos(2x) = 2cos^2(x)-1 into the left handside (LHS) of the equation which should give you: (8cos^2(x) - 4)/(2cos^2(x))   This can be cancelled down to 4-2/cos^2(x) Manipulate the right handside (RHS) of the equation by using the identity: sec(x) = 1/cos(x). This should give the RHS to be 4-2/cos^2(x) which = LHS. Make it obvious to the examiner that the sides of the are equal by equating them at the end so you don't lose marks!

TN
Answered by Tegan N. Maths tutor

13147 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y(x+y)=3 evaluate dy/dx when y=1


The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


Integrate (x^2)(e^x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning