x^3 + 2x^2 - 9x - 18 = (x^2 - a^2)(x + b) where a,b are integers. Work out the three linear factors of x^3 + 2x^2 - 9x - 18. (Note: x^3 indicates x cubed and x^2 indicates x squared).

There are a few different ways to approach this problem. The most obvious is to attempt to factorise x+ 2x- 9x - 18. However it is very difficult to approach the problem like this. fortunately the question has given us that the cubic expression factorises to(x2-a2)(x+b). If we expand this back out we get x+ bx- a2x - a2b. We can then compare this cubic to our original and see that a2 = 9 and b = 2.

So we now have x3+2x2-9x-18 = (x2-9)(x+2). We know that we can factorise x2-9 to (x+3)(x-3) so our linear factorisation of the original cubic is (x+3)(x-3)(x+2).

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of the minimum point of the function y=(x-5)(2x-2)


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


How do I determine if a stationary point on a curve is the maximum or minimum?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences