Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)

tanh(x) = ((ex-e-x)/2)/((ex+e-x)/2) 1 - tanh2(x) = 1-((ex-e-x)/(ex+e-x))2  = ((e2x+e-2x+2)-(e2x+e-2x-2))/(ex+e-x)2 = (2ex.2e-x)/(ex+e-x)2 = 4/(ex+e-x)2 = sech2x

CB
Answered by Chris B. Further Mathematics tutor

7055 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

If the complex number z = 5 + 4i, work out 1/z.


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


Calculate: ( 2+i√(5) )( √(5)-i).


Prove by induction that 11^n - 6 is divisible by 5 for all positive integer n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning