Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)

tanh(x) = ((ex-e-x)/2)/((ex+e-x)/2) 1 - tanh2(x) = 1-((ex-e-x)/(ex+e-x))2  = ((e2x+e-2x+2)-(e2x+e-2x-2))/(ex+e-x)2 = (2ex.2e-x)/(ex+e-x)2 = 4/(ex+e-x)2 = sech2x

CB
Answered by Chris B. Further Mathematics tutor

7010 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Why does matrix multiplication seem so unintuitive and weird?!


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


What is the value of x from (x+2)^2=4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning