Given that y = ((4x+3)^5)(sin2x), find dy/dx

First of all, we have to use the product rule, since two things are multiplied together.  The product rule states that d/dx (u*v) = vu' + uv'

Let u = (4x+3)5  v = sin(2x)

Now, to find  u' and v' we have to find du/dx and dv/dx. As we see, we need to use the chain rule to find du/dx

u' = 20(4x+3)4   v' = 2cos(2x)

Finally, dy/dx = vu' + uv' = 20sin(2x)(4x+3)4 + 2cos(2x)(4x+3)5

JN
Answered by Juozas N. Maths tutor

3199 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


What is the best way to revise for a Maths A-level?


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning