Could you please go through an example question where you have to solve quadratic simultaneous equations?

Of course - let's solve this question:

Question: Solve the following quadratic simultaneous equations

(1) 2x + y = 4 - x

(2) y2 + 4x = 12

Answer:

a) Let us start by re-arranging the first equation:

          2x + y = 4 - x  -> Initial equation

          y = 4 - 3x -> bring the '2x' on the left hand-side to the right hand-side - let's call this equation (3)

b) Substitute (3) into (1):

          (4 - 3x)2 + 4x = 12

c) Expand the brackets:

          16 - 24x + 9x2 + 4x = 12

d) Re-arrange to get all 'x's onto one side:

          9x2 - 20x + 4 = 0

e) Factorise the equation and solve:

          (9x - 2)(x - 2) = 0

          x = 2/9 or 2

f) Substitute the two values of 'x' into equation (3):

          When x = 2/9 -> y = 4 - 3(2/9) = 4 - 6/9 = 10/3

          When x = 2 -> y = 4 - 3(2) = 4 - 6 = -2

g) Therefore the solutions are: (2/9 , 10/3) and (2 , -2)

Answered by Akhil S. Maths tutor

2612 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Completing the square of 2x^2 - 8x + 7 = 0


A cuboid has sides such that the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². What is the length of the shortest side?


Simplify 125 ^ -2/3


Solve the simultaneous equations: x^2 + y^2 = 29 and y - x = 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences