Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

Answered by Kieran S. Physics tutor

10101 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does temperature effect the resistance of conductors?


A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


How are X-rays created?


Explain, using appropriate laws of motion, why the air exerts a force on the engine in the forward direction.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences