Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

Answered by Kieran S. Physics tutor

9297 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A student has a mass of 80kg. How much would the student weigh on the surface of the Moon?


How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?


If the force between two point charges of charge 'Q1' and 'Q2' which are a distance 'r' apart is 'F' then what would the force be if the charge of 'Q1' is tripled and the distance between them doubled?


What would happen to n and Emax when  a) the intensity is reduced to 1/2 I but the wavelength λ is unchanged? b) the wavelength λ is reduced but the intensity is unchanged?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences