Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0

First we differentiate the substitution giving, du/dx=-sinx, which is rearanged to dx=du/-sinx. we can then substitute this into the integral to get sinx e^cosx+1 du/-sinx which can be simplified to -e^cosx+1 du. with this we can then use the substition to obtain -e^u du. Putting in the values of x in the substitution we get that the limits will be 1 and 2. Now when we integrate we get -(e^1 - e^2), which can be written as e^2 - e^1 or e(e-1).

KS
Answered by Kieran S. Physics tutor

10509 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does a skydiver go through two different terminal velocities?


If a 10N tension force is exerted on a steel beam (E = 200 GPa) with cross-sectional area 1cm^2, what is the stress acting on the beam? What is the change in length of the beam, if the beam is 10cm long?


Describe and explain the photoelectric effect (6 marks)


How does a thermal nuclear reactor work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences