Find the gradient of the curve y = x^2(ln(x)) at x = e

We'll need to use the product rule.

Let's take u = x^2 -> du/dx = 2x, and v = ln(x) -> dv/dx = 1/x

Then dy/dx = x^2(1/x) + 2xln(x) = x + 2xln(x)

Substituting our x value gives (dy/dx)|(x = e) = e + 2eln(e) = 3e

CR
Answered by Charlie R. Maths tutor

6029 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiante y = arctan(c)


Differentiate (x^0.5)ln(x) with respect to x.


Solve the inequality (9x+5)/12 > (4x+1)/3


How do I express y=acosx+bsinx in the form y=Rcos(x-c)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences