Find the gradient of the curve y = x^2(ln(x)) at x = e

We'll need to use the product rule.

Let's take u = x^2 -> du/dx = 2x, and v = ln(x) -> dv/dx = 1/x

Then dy/dx = x^2(1/x) + 2xln(x) = x + 2xln(x)

Substituting our x value gives (dy/dx)|(x = e) = e + 2eln(e) = 3e

Answered by Charlie R. Maths tutor

5652 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all solution to the equation 3tan(x)=8/sin(x) for 0<=x<=360 degrees


How do you differentiate y=sin(cos(x))?


Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences