There are n sweets in a bag, 6 of which are orange, the rest are yellow. Hannah takes a random sweet from the bag and eats it, and then does so again. The probability that Hannah eats two orange sweets is 1/3. Show that n^2-n-90=0.

The probability that the first sweet Hannah eats is orange is 6/n, as there are n sweets and 6 of them are orange. If this is indeed orange, then there are now n-1 sweets left in the bag, of which 5 are orange. Therefore, the probability that the second sweet is orange is 5/(n-1). Two find the probability that two events both happen, you multiply the two probabilities, so we do (6/n)*(5/(n-1))=30/(n(n-1))=30/n2-n. We're told in the question that the probability both sweets are orange is 1/3, so we know that 1/3=30/n2-n. Multipyling both sides by 3 gives: 1=90/n2-n, then multipyling both sides by n2-n gives n2-n=90. Finally, we subtract 90 from both sides to give n2-n-90=0

Answered by Jonny S. Maths tutor

3048 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Use the equation 2(x+4) + 6(x-1) = 14, to find x.


Solve the simultaneous equation: x+2y=8 and 2x+y=10 - using a calculator


If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


ABC is an acute-angled triangle. BA=7cm and BC=8cm. The area of triangle ABC is 18 cm^2 . Work out the size of angle BAC. Give your answer correct to 3 significant figures. You must show all your working.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences