There are n sweets in a bag, 6 of which are orange, the rest are yellow. Hannah takes a random sweet from the bag and eats it, and then does so again. The probability that Hannah eats two orange sweets is 1/3. Show that n^2-n-90=0.

The probability that the first sweet Hannah eats is orange is 6/n, as there are n sweets and 6 of them are orange. If this is indeed orange, then there are now n-1 sweets left in the bag, of which 5 are orange. Therefore, the probability that the second sweet is orange is 5/(n-1). Two find the probability that two events both happen, you multiply the two probabilities, so we do (6/n)*(5/(n-1))=30/(n(n-1))=30/n2-n. We're told in the question that the probability both sweets are orange is 1/3, so we know that 1/3=30/n2-n. Multipyling both sides by 3 gives: 1=90/n2-n, then multipyling both sides by n2-n gives n2-n=90. Finally, we subtract 90 from both sides to give n2-n-90=0

JS
Answered by Jonny S. Maths tutor

3417 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the area of a circle with a diameter of 3cm? (To 2 d.p.)


How do I find the roots and and coordinates of the vertex of the graph y = 2x^2 + 4x - 8 ?


Gemma has the same number of sweets as Betty. Gemma gives 24 of her sweets to Betty. Betty now has 5 times as many sweets as Gemma. Workout the total number of sweets that Gemma and Betty have.


Why do we use simultaneous equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences