How do I differentiate 4x^3 + 2x + x^4 with respect to x?

With differentiation and integration, we can take each term separately. In general, to difference a term involving x's with respect to x, you first multiply the power of x by the coefficient of x to find the new coefficient. You then decrease the power of x by one.

The first term in this question is 4x^3. The power of x is 3 and the coefficient of x is 4, so we multiply these together to get 12. This is the coefficient of the differential. We then decrease the original power, 3, by one. So 4x^3 differentiated is 12x^2. Similarly, 2x differentiates to become 2 (because x=x^1 and multiplying 2 and 1 gets 2, and decreasing one from this power gets 0, so we have 2x^0 and x^0=1), and x^4 differentiates to 4x^3. So the whole thing differentiated is 12x^2+2+4x^3.

Answered by Laura T. Maths tutor

2890 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity: sin^2(x)+cos^2(x) = 1


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


Differentiate ln(x)/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences