How do I differentiate 4x^3 + 2x + x^4 with respect to x?

With differentiation and integration, we can take each term separately. In general, to difference a term involving x's with respect to x, you first multiply the power of x by the coefficient of x to find the new coefficient. You then decrease the power of x by one.

The first term in this question is 4x^3. The power of x is 3 and the coefficient of x is 4, so we multiply these together to get 12. This is the coefficient of the differential. We then decrease the original power, 3, by one. So 4x^3 differentiated is 12x^2. Similarly, 2x differentiates to become 2 (because x=x^1 and multiplying 2 and 1 gets 2, and decreasing one from this power gets 0, so we have 2x^0 and x^0=1), and x^4 differentiates to 4x^3. So the whole thing differentiated is 12x^2+2+4x^3.

Answered by Laura T. Maths tutor

2852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure


How to integrate and differentiate ((3/x^2)+4x^5+3)


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences