Line AB has equation 6x + y - 4 = 1. AB is perpendicular to the line y = mx + 1, find m.

First, we have to know that if 2 lines are perpendicular, the product of their gradients is -1.

Next, we have to express the 2 equations in similar ways by rearranging them and making y the common subject.

The line AB has equation y = -6x + 5, and the second is just y = mx + 1.

From here, since both lines are of the form y = mx + c, where m is the gradient and c is the intercept, we can see that the gradient of the first line is -6, and the second line is m. 

Since the product of these 2 gradients is -1, we know that

-6 x m = -1

Therefore m = 1/6

Answered by Jack R. Maths tutor

3302 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


Find the point of intersection of the lines y=2x-7 and 4y-2=3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences