Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°

To start, we use the inverse trigonometric formulae to convert the 'cot' function into a 'tan' function: cot(2x)=1/(tan(2x))=3 Inverting this gives: tan(2x)=1/3 2x=arctan(1/3)=18.43°or (180+18.43)° Therfore dividing by 2 gives the solutions as: x= 9.22° or 99.22°

MG
Answered by Matthew G. Maths tutor

9120 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


How would you find the coordinates of the intersections of a graph with the x and y axes, and the coordinates of any turning points?


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


Write 5x^2 + 30x + 36 in the form 5(x+A)^2+B where A and B are integers to be found.Then write the equation of symmetry for the graph of 5x^2 + 30x + 36


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning