Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°

To start, we use the inverse trigonometric formulae to convert the 'cot' function into a 'tan' function: cot(2x)=1/(tan(2x))=3 Inverting this gives: tan(2x)=1/3 2x=arctan(1/3)=18.43°or (180+18.43)° Therfore dividing by 2 gives the solutions as: x= 9.22° or 99.22°

Answered by Matthew G. Maths tutor

8623 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx if y=(x^3)(e^2x)


What does it mean for a function to have one to one mapping?


I don't understand how functions work. How do I decide if something is a function?


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences