Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.

log_{x} (7y+1) - log{x} (2y) =1 --> log_{x} [(7y+1)/2y]=1 (y =/= 0, Rules of logarithms i.e. difference of logarithms) --> x = [(7y+1)/2y] (x>0, Rules of logarithms i.e. log_{x} x = 1) --> 2yx = 7y+1 (Multiply by 2y) --> 2yx-7y= 1 (Moving y's to one side) --> y(2x-7) = 1 (Factorising out the y) --> y = 1/(2x-7) 

Answered by Christopher L. Maths tutor

5374 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is θ radians. The area of the sector AOB is 11 cm2 Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.


factorise x^3 + 3x^2 - 13x - 15


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


Express (16x+78)/(2x^2+25x+63) as two fractions


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences