Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4

Answer = (3,17.5) maximum (4,17.33) minimum

First differentiate y = x^3/3 - 7x^2/2 + 12x + 4 to find dy/dx. Now, at turning points dy/dx = 0 and factorise to find x when dy/dx = 0. Put x back into orginal equation to find y at turning point. 

Now to find the nature of the turning point take your equation for dy/dx and differentiate again to find d^2y/dx^2. Put x of both points into this equation. If equation comes out positive the turning point is a minimum. If it comes out negative turning point is maximum. Now plot these points on a graph and see how they add up

Answered by John S. Maths tutor

8168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does the equation x^2+y^2=r^2 form a circle in the Cartesian plane?


Solve the equation 2cos2(x) + 3sin(x) = 3, where 0<x<=π


How do you differentiate y=ln(x)


A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences