Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4

Answer = (3,17.5) maximum (4,17.33) minimum

First differentiate y = x^3/3 - 7x^2/2 + 12x + 4 to find dy/dx. Now, at turning points dy/dx = 0 and factorise to find x when dy/dx = 0. Put x back into orginal equation to find y at turning point. 

Now to find the nature of the turning point take your equation for dy/dx and differentiate again to find d^2y/dx^2. Put x of both points into this equation. If equation comes out positive the turning point is a minimum. If it comes out negative turning point is maximum. Now plot these points on a graph and see how they add up

JS
Answered by John S. Maths tutor

8298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.


Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


x = t^3 + t, y = t^2 +1, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences