Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4

Answer = (3,17.5) maximum (4,17.33) minimum

First differentiate y = x^3/3 - 7x^2/2 + 12x + 4 to find dy/dx. Now, at turning points dy/dx = 0 and factorise to find x when dy/dx = 0. Put x back into orginal equation to find y at turning point. 

Now to find the nature of the turning point take your equation for dy/dx and differentiate again to find d^2y/dx^2. Put x of both points into this equation. If equation comes out positive the turning point is a minimum. If it comes out negative turning point is maximum. Now plot these points on a graph and see how they add up

JS
Answered by John S. Maths tutor

8636 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the possible values of cos(x) from 5cos^2(x) - cos(x) = sin^2(x)?


How can we determine stationary points by completing the square?


Find the equation of the line through the following points: (-2, -3) and (1, 5)


How do we know that the derivative of x^2 is 2x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning