The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1

In order to prove that one real root of an equation is situated in a certain interval, we calculate the value of the function at the ends of the given interval. In the given case, f(-2) = (-2)^3 - 3*(-2) + 1 = -1 and f(-1) = (-1)^3 - 3*(-1) + 1 = 3. As our function is an elementary one (a polynomial), it is continuous over all real values, which means that the function will take all real values from -1 to 3 as x goes from -2 to -1, including 0. This means that one of the roots of f lies in the interval (-2, -1).

Answered by Paul T. Maths tutor

9928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.


The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.


What is the chain rule, product rule and quotient rule and when do I use them?


Solve the inequality |4x-3|<|2x+1|.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences