Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3

There will be intersection when x^2 + 4x + 3 = kx + 2. Our goal is to find the values of k which would only give one solution to this quadratic equation, which would make the lines 'tangent' to each other. First we rearrange the equation to get it in a familiar form: x^2 + (4-k)x + 1 = 0 To have one solution, the discriminant (b^2 - 4ac) must be zero. (4-k)^2 - 411 = 0 16 - 8k + k^2 - 4 = 0 k^2 - 8k +12 = 0 Factorising: (k-6)(k-2) = 0 So k = 6 and k = 2 are valid solutions to this problem.

AN
Answered by Andrew N. Maths tutor

35233 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the positive x axis and the line given by y=-(x^2)+2x


Why bother with learning calculus?


How do I find the root of a quadratic equation?


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning