Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3

There will be intersection when x^2 + 4x + 3 = kx + 2. Our goal is to find the values of k which would only give one solution to this quadratic equation, which would make the lines 'tangent' to each other. First we rearrange the equation to get it in a familiar form: x^2 + (4-k)x + 1 = 0 To have one solution, the discriminant (b^2 - 4ac) must be zero. (4-k)^2 - 411 = 0 16 - 8k + k^2 - 4 = 0 k^2 - 8k +12 = 0 Factorising: (k-6)(k-2) = 0 So k = 6 and k = 2 are valid solutions to this problem.

AN
Answered by Andrew N. Maths tutor

33801 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y=2x^3. Find dy/dx.


An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


Differentiate with respect to x: 3 sin^2 x + sec 2x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences