Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3

There will be intersection when x^2 + 4x + 3 = kx + 2. Our goal is to find the values of k which would only give one solution to this quadratic equation, which would make the lines 'tangent' to each other. First we rearrange the equation to get it in a familiar form: x^2 + (4-k)x + 1 = 0 To have one solution, the discriminant (b^2 - 4ac) must be zero. (4-k)^2 - 411 = 0 16 - 8k + k^2 - 4 = 0 k^2 - 8k +12 = 0 Factorising: (k-6)(k-2) = 0 So k = 6 and k = 2 are valid solutions to this problem.

Answered by Andrew N. Maths tutor

33680 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


Why is there always constant of integration when you evaluate an indefinite integral?


Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


how to write down the differential equation from a word problem, involving rate of change.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences