Solve the simultaneous equations 2x - y = 13, x - 2y = 11

  1. In order to solve simultaneous equations, you need to make either terms of x (i.e. '2x') or terms of y (i.e. 'y') in equation (1) and equation (2) equal. To do this, multiply either (1) or (2) as shown below.

(1) 2x - y = 13     (x2)           =       (1) 4x - 2y = 26

(2) x - 2y = 11                               (2) x - 2y = 11 

  1. Cancel out the alike terms (in this case, '2y') and follow the equation through. Important: remember the rules about adding and subtracting +s and -s. 

   (1) 4x - 2y = 26

(2) x - 2y = 11                        < (A minus and a minus equal a plus! In other words -2y - -2y = -2y + 2y = 0)

= 4x - x = 26 - 11

3x = 15

x = 5

  1. Substitute your new value for x into one of the original equations and follow through.

x - 2y = 11  becomes  5 - 2y = 11

5 - 11 = 2y

  • 6 = 2y

-3 = y

x = 5 and y = -3

Answered by Graciella M. Maths tutor

15757 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 700 students in a high school. 10% of them play team sports. 36 students play football, and 22 students play both football and basketball. When choosing one student from the school, what is the probability of them playing basketball only?


Ben would like to buy two tickets for the theatre, each ticket costs £25 and there is a 15% booking fee applied to the ticket cost. How much does it cost him to buy the two tickets with the additional fee?


How do I know which out of the Sine and Cosine rule I should use?


what is x+24=15


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences