Integrate xcos(x)

This problem will be solved using the integration by parts method, taking the integrated function as udv which answer is uv-(integration of vdu) : u=x and dv=cos(x) so, du=dx and v=sin(x). We have, xsin(x)-integration(sinxdx), and knowning that the integrate of sinx is: -cos(x)+c (constant), the final answer is: xsin(x)+cos(x)+c.

LA
Answered by Lucia A. Maths tutor

3759 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiante y = arctan(c)


The arithmetic series is given by (k+1)+(2k+3)+(3k+5)+...+303. a)Find the number of term in the series in terms of k. b) Show that the sum of the series is given by (152k+46208)/(k+2). c)Given that S=2568, find k.


Integrate f(x)=lnx


Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning