Integrate xcos(x)

This problem will be solved using the integration by parts method, taking the integrated function as udv which answer is uv-(integration of vdu) : u=x and dv=cos(x) so, du=dx and v=sin(x). We have, xsin(x)-integration(sinxdx), and knowning that the integrate of sinx is: -cos(x)+c (constant), the final answer is: xsin(x)+cos(x)+c.

LA
Answered by Lucia A. Maths tutor

3653 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


Differentiate 5x^2+5y^2-6xy=13 to find dy/dx


Prove that √2 is irrational


Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning