write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]

4-[(x+3)*((x-2)/(x^2 +5x +6))]

4-[(x+3)(x-2)/(x^2 +5x +6))]

factorise denominator 

4-[(x+3)(x-2)/(x+3)(x+2)]

cancel down (x+3)

4-[(x-2)/(x+2)]

expand 

4(x+2)/(x+2) - (x-2)/(x+2)

now share a denominator so make one fraction 

(4x+8-x+2)/(x+2)

simplify

(3x+10)/(x+2)

ST
Answered by Sarah T. Further Mathematics tutor

12110 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


x^3 + 2x^2 - 9x - 18 = (x^2 - a^2)(x + b) where a,b are integers. Work out the three linear factors of x^3 + 2x^2 - 9x - 18. (Note: x^3 indicates x cubed and x^2 indicates x squared).


Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.


Express (7+ √5)/(3+√5) in the form a + b √5, where a and b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning