Answers>Maths>IB>Article

Find a and b (both real) when (a+b*i)^2=i.

Every complex number has a real and imaginary part. For the complex number z=a+bi the notation for real and imaginary parts respectively are Re(z)=a and Im(z)=b. If you know this, many complex algebra equations will become much simpler to solve.

In this specific case, firstly consider LHS, giving z=a2+ 2abi+(ib)2=(a2-b2)+(2ab)*i. (since i2=-1). Consequently, Re(z)=a2-b2 and Im(z)=2ab. Next consider the RHS, write its real and imaginary parts: Re(i)=0 and Im(i)=1. Equate LHS and RHS, getting a system of equations:  a2-b2=0 and 2ab=1.
The solutions are a=-1/sq(2), b=1/sq(2) and a=1/sq(2), b=-1/sq(2).

Answered by Urte A. Maths tutor

1483 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Integration by Parts


How to integrate ∫〖3x/√(1-x^2 ) dx〗?


In the arthmetic sequence, the first term is 3 and the fourth term is 12. Find the common difference (d) and the sum of the first 10 terms.


Find the coordinates of the minimum or maximum of the function f(x) = 3x^2 -2x +9 and determine if it's a minimum or maximum.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences