Find the normal to the curve y = x^2 at x = 5.

Differentiate the original equation (y = x^2) to find the gradient (m) of the line which is a tangent to the curve.

Dy/dx = 2x 

Therefore m = 2

Calculate the negative reciprocal (m2) which will give the gradient of the normal.

m2 = -0.5

Using the equation y=mx+c find the equation of the normal.

When x=5, y=25.

25=(-0.5)(5) + c

c=27.5

y=-0.5x+27.5

AS
Answered by Aphisha S. Maths tutor

3550 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences