Find the normal to the curve y = x^2 at x = 5.

Differentiate the original equation (y = x^2) to find the gradient (m) of the line which is a tangent to the curve.

Dy/dx = 2x 

Therefore m = 2

Calculate the negative reciprocal (m2) which will give the gradient of the normal.

m2 = -0.5

Using the equation y=mx+c find the equation of the normal.

When x=5, y=25.

25=(-0.5)(5) + c

c=27.5

y=-0.5x+27.5

Answered by Aphisha S. Maths tutor

3380 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4


Let f(x)=x^3 - 2x^2 + 5. For which value(s) of x does f(x)=5?


Differentiate (x^0.5)ln(x) with respect to x.


A curve has the equation y=12+3x^4. Find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences