How do I find the expression for the nth term in a series of numbers?

First write down the series of numbers e.g.  8,  12,  16,  20.

Calculate the difference between each term in the series 12-8 = 4, 16-12 = 4,  20-16 = 4 This shows that the expression will begin with 4n as the difference is 4.  Next write out the series of number that would be in the expression '4n'. This would be: 4(1) = 4, 4(2) = 8, 4(3) = 12, 4(4) = 16. Now right the 4n sequence above the original sequence so it will be: 4  8  12  16 // 8 12 16 20 .  Caculate how to get from the first sequence to the second. This would be +4 as to get from 4 to 8 and 8 to 12 you need to add 4. Therefore the expression is 4n+4.  Always test this out afterwards e.g. 4(1)+4 = 8, 4(2)+4=12, 4(3)+4 = 16, 4(4)+4 = 20.  The sequence 8, 12, 16, 20 is the same as we started with so 4n+4 is the expression for the nth term.

Answered by Megan B. Maths tutor

15204 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Shape ABCD is a parallelogram. Y is the mid-point of AB and Z is on BC such that BZ=1/2ZC. Given that AB=a and BC=b, describe, in terms of a and b: a) AC b)CY c)YZ


A class of pupils were asked about how they travelled to school on a particular day. 1/6 of the pupils were driven to school in a car. 2/5 of the pupils took the bus. The rest of the pupils walked to school. Calculate the fraction of pupils who walk


Expand these brackets 3x(x - 2)


What is (x-5)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences