Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.

We will call the integral I, so I = integral of 1/(3+(x+4)1/2) dx between 0 and 5. First substitute u=3+(x+4)1/2 into the equation to get I = integral of 1/u dx between 0 and 5 Next we want to change the 'dx' into a 'du' as our integral now needs to be with respect to u as that is the variable in the integral. We do this by finding dx in terms of du by differentiating u with respect to x: du/dx = (1/2)*(x+4)-1/2 dx = 2(x+4)1/2 du = 2(u-3)     Substituting this into the equation gives you: I = integral of 2(u-3)/u du  = integral of 2-(6/u)    However this can no longer be between 0 and 5 as those were the values x would have taken. Now that the integral is with respect to u, we need to find the values that u would take. If x=5, u=3+(5+4)1/2=6 If x=0, u=3+(0+4)1/2=5 So now I = integral of 2-(6/u) du between 5 and 6 This gives [2u-6ln(u)] between 5 and 6 = (12-6ln(6))-(10-6ln(5)) = 2 + 6ln(5) - 6ln(6) = 2 +6ln(5/6)

Answered by Calum B. Maths tutor

3325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When I integrate by parts how do I know which part of the equation is u and v'?


Find the integral between 1 and -2 for (4-x^2-3x^3)


Solve x^2=3(x-1)^2


How to plot quadratic functions, e.g. F(x)= x^2 + 2x +1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences