Sketch the curve y = x^2 - 6x + 5, identifying roots and minima/maxima.

Remeber the formula: (a - b)2 = a2 - 2ab + b2. Notice that y = x2 - 23x + 5, so we want to write this using (x - 3)2 = x2 - 23x* + 9. Taking 4 from both sides gives:  (x - 3)2 - 4 = x2 - 6x + 5 = y.

We need some simple facts about graphs: (1) y = x2 is a parabola (U shaped); (2) if we replace x wih x - 3 we move the graph to the right by 3; (3) if we add -4 to y, the graph moves down by 4.

To find minima: notice that (x - 3)2 is always positive or 0, so (x - 3)2 + -4 >= -4. If x is not 3, then (x - 3)2 > 0, so y > -4; but if x = 3, we have y = -4, so -4 is the smallest value of y (i.e. a minimum) at (3, -4).

To find roots, we can solve the quadratic y = 0:

(x - 3)2 - 4 = 0  <=>  (x - 3)2 = 4  <=>   x - 3 = 2  or  x - 3 = -2  <=>  x = 5  or  x = 1.

(Rememer that x2 = a2 has two solution: x = a and x = -a.) With this it should be easy to sketch the curve!

TD
Answered by Tutor69809 D. Maths tutor

5257 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ladder 6.8m long is leaning against a wall. The foot of the ladder is 1.5m from the wall. Calculate the distance the ladder reaches up the wall.


What is the lowest common multiple and the highest common factor of 120 and 150?


Purple paint is made by mixing red paint and blue paint in the ratio 5 : 2 Yan has 30 litres of red paint and 9 litres of blue paint. What is the maximum amount of purple paint he can make?


Expand (x-5)(2x-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning