Integrate 1 / x(2sqrt(x)-1) on [1,9] using x = u^2 (u > 0).

Differentiate x = u2 to get dx = 2u du. We need to change the limits, too:

1 <= x <= 9  <==>  1 <= u2 <= 9  <==>  1 <= u <= 3  (since we are given u > 0).

Now we can substitute in the integrand:

dx / x (2sqrt(x) - 1) = (2u du) / u2(2u - 1) = (2 du) / u(2u -1).

Noticd that we can write 2 / u(2u - 1) = 4 / (2u -1) - 2 / u, so that

Integral(2 / u(2u-1)) du = Integral( 4 / (2u - 1) ) du - Integral( 2 / u ) du

                                      =  2 ln(2u-1) - 2 ln(u) + c.

The value of the definite integral is 2 ln (5/6), which follows by a simple calculation in the above.

Answered by Tutor69809 D. Maths tutor

4127 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]


Prove the trigonometric identity tan^2(x)+1=sec^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences