Integrate 1 / x(2sqrt(x)-1) on [1,9] using x = u^2 (u > 0).

Differentiate x = u2 to get dx = 2u du. We need to change the limits, too:

1 <= x <= 9  <==>  1 <= u2 <= 9  <==>  1 <= u <= 3  (since we are given u > 0).

Now we can substitute in the integrand:

dx / x (2sqrt(x) - 1) = (2u du) / u2(2u - 1) = (2 du) / u(2u -1).

Noticd that we can write 2 / u(2u - 1) = 4 / (2u -1) - 2 / u, so that

Integral(2 / u(2u-1)) du = Integral( 4 / (2u - 1) ) du - Integral( 2 / u ) du

                                      =  2 ln(2u-1) - 2 ln(u) + c.

The value of the definite integral is 2 ln (5/6), which follows by a simple calculation in the above.

Answered by Tutor69809 D. Maths tutor

3948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does sin^2(x)+cos^2(x)=1?


If x^2 + 4x + 3xy + y^3 = 6, find the first derivative.


f(x)=2x^3-7x^2+4x+4, prove that (x-2) is a factor and factorise f(x) completely


C1 June 2014 Q)4 - https://pmt.physicsandmathstutor.com/download/Maths/A-level/C1/Papers-Edexcel/June%202014%20QP%20-%20C1%20Edexcel.pdf


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences