Integrate 1 / x(2sqrt(x)-1) on [1,9] using x = u^2 (u > 0).

Differentiate x = u2 to get dx = 2u du. We need to change the limits, too:

1 <= x <= 9  <==>  1 <= u2 <= 9  <==>  1 <= u <= 3  (since we are given u > 0).

Now we can substitute in the integrand:

dx / x (2sqrt(x) - 1) = (2u du) / u2(2u - 1) = (2 du) / u(2u -1).

Noticd that we can write 2 / u(2u - 1) = 4 / (2u -1) - 2 / u, so that

Integral(2 / u(2u-1)) du = Integral( 4 / (2u - 1) ) du - Integral( 2 / u ) du

                                      =  2 ln(2u-1) - 2 ln(u) + c.

The value of the definite integral is 2 ln (5/6), which follows by a simple calculation in the above.

Answered by Tutor69809 D. Maths tutor

4360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first and second derivative of f(x) = 6/x^2 + 2x


The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.


Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences