Why is n^0 always 1 and not 0?

Anything raised to the zeroth power is a difficult thing to get your head around. The easiest explanation (not a full proof) is to look at what happens as we go down in powers of n: n^3=nnn        n^2=(n^3)/n=nn       n^1=(n^2)/n=n From that it follows that n^0=(n^1)/n=n/n=1 So n^0=1. I think the easiest way to think about this conceptually is that, although x+0=x, x0=0 while x*1=1. Funny things happen with 0, which is why you should never consider the expression 0^0 as either equal to 0 or 1! (Or not at this level anyway.)

JC
Answered by Joseph C. Maths tutor

4480 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation: 2x + 3y = 6, 3x + 2y = 5.


Solve the simultaneous equations 2x + 3y = 6 - 3x and 5x + 6y = 10 - y.


Solve the following simultaneous equations: 1) 2x + 7y = 12 2) 4x = 14 - 4y


Solve algebraically for a and b: 6a+b=16, 5a-2b=19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning