Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17

Tackle this problem one part at a time: First differentiate 2x2y using the product rule, showing dy/dx(2x2y) = 4xy + 2x2(dy/dx). After this, the remainder of the question is easier, as there are no more mixes of x and y.  dy/dx(2x + 4y - cos((pi)y)) = 2 + 4(dy/dx) + (pi)(dy/dx)sin((pi)y)           Also, dy/dx(17) = 0 Hence the equation you get is: 4xy + 2x2(dy/dx) + 2 + 4(dy/dx) + (pi)(dy/dx)sin((pi)y) = 0 Rearranging, you can see: dy/dx = (-2 - 4xy)/(2x2 + 4 + (pi)sin((pi)y))

Answered by Nick E. Maths tutor

5154 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does integration by parts work?


Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


Express Cosx-3Sinx in form Rcos(x+a) and show that cosx-3sinx=4 has no solution MEI OCR June 2016 C4


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences