Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17

Tackle this problem one part at a time: First differentiate 2x2y using the product rule, showing dy/dx(2x2y) = 4xy + 2x2(dy/dx). After this, the remainder of the question is easier, as there are no more mixes of x and y.  dy/dx(2x + 4y - cos((pi)y)) = 2 + 4(dy/dx) + (pi)(dy/dx)sin((pi)y)           Also, dy/dx(17) = 0 Hence the equation you get is: 4xy + 2x2(dy/dx) + 2 + 4(dy/dx) + (pi)(dy/dx)sin((pi)y) = 0 Rearranging, you can see: dy/dx = (-2 - 4xy)/(2x2 + 4 + (pi)sin((pi)y))

Answered by Nick E. Maths tutor

5156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are differences between speed and velocity, velocity and speed and acceleration?


A pot of water is heated to 100C and then placed in a room at a temperature of 18C. After 5 minutes, the pan temperature falls by 20C. Find the temperature after 10minutes.


Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


Solve the differential equation (1 + x^2)dy/dx = x tan(y)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences