Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17

Tackle this problem one part at a time: First differentiate 2x2y using the product rule, showing dy/dx(2x2y) = 4xy + 2x2(dy/dx). After this, the remainder of the question is easier, as there are no more mixes of x and y.  dy/dx(2x + 4y - cos((pi)y)) = 2 + 4(dy/dx) + (pi)(dy/dx)sin((pi)y)           Also, dy/dx(17) = 0 Hence the equation you get is: 4xy + 2x2(dy/dx) + 2 + 4(dy/dx) + (pi)(dy/dx)sin((pi)y) = 0 Rearranging, you can see: dy/dx = (-2 - 4xy)/(2x2 + 4 + (pi)sin((pi)y))

Answered by Nick E. Maths tutor

5201 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that 8 times any triangle number is always 1 less than a square number


Calculate dy/dx for y=x(x−1)


Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


Differentiate y= 2^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences