Solve for x, 5sin(x) - 3cos(x) = 2 , in the interval 0<x<2pi

5sin(x)-3cos(x)=2

Express in the form Rsin(x-@) = Rsin(x)cos@ - Rcos(x)sin@

Rcos@ =5

Rsin@ = 3    

tan@ = 3/5           @=tan-1(3/5)= 0.540

R = sqrt(52 +32 )= sqrt(34)

sqrt(34)sin(x-0.540) = 2

sin(x - 0.540) = 0.343

Let Y = x-0.540

sinY = 0.343         in the interval -0.540 < Y < 5.743

Y = sin-1 (0.343)=0.350

Using CAST diagrams, we obtain 0.350 and pi-0.350 in this interval

Y = 0.350, 2.791

x = 0.350 + 0.540, 2.791 + 0.540

x = 0.890, 3.331

Answered by Stefan M. Maths tutor

3612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


What's the point of writing my mathematics well if I don't get extra marks for it?


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences