Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.

Answer: 16x/(x - 2)

Start with the numerator of the first fraction, 16x2 + 4x3 , take a factor of 4x2 out to get 4x2(4 + x). Then look at the denominator of the fraction, x3 + 2x2 - 8x, immediately you can take out a factor of x to get, x(x2 + 2x - 8) which you can then factorise to get x(x - 2)(x + 4). From this you can see that x(x + 4) can be removed from the numerator and denominator to leave 4x/(x - 2). Then since the two fractions now have the same denominator you can just add the numerators together, 4x + 12x = 16x, giving the answer 16x/(x - 2).

Answered by Manon S. Maths tutor

2955 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


Expand and simplify (n + 2)^3 − n^3.


Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences