Calculate the shaded finite region between the curve and the axis for the curve: 3x^2 +11x -4 = 0

3x2+11x-4=0 #Factorise to find where the curve crosses the x axis (3x-1)(x+4)=0 #Each bracket equals 0 x=1/3, -4  #Integrate the curve between these two points to find the area enclosed in the curve [x3 + 11/2 x2 -4x] #With limits 1/3 to -4 ((1/3)3 + 11/2(1/3)2-4(1/3)) - ((-4)3 + 11/2(-4)2 -4(-4)) = -40.6851851851... #The negitive sign only means the area is below the x axis Area is equal to 40.7 #Ussually round to 3d.p

HF
Answered by Hugo F. Maths tutor

3554 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


The equation 5x sqaured + px + q , where p and q are constants, has roots α and α + 4. (a) Show that p squared = 20q +400.


How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning