Show that (sqrt(3) + sqrt(75))^{2} = 108

The key here is to simplify the left hand side. There are two different approaches to take here, one slightly faster but both perfectly legitimate. First approach: Remember the formula (a + b)^{2} = a^{2} + 2ab + b^{2}. Then (sqrt(3) + sqrt(75))^{2} = 3 + 2sqrt(3)sqrt(75) + 75 = 78 + 2sqrt(225) = 78 + 2*15 = 108. Second approach: This approach is effectively the same as the first but in slightly more steps (which should be easier in general). We can write the left hand side out in full as (sqrt(3) + sqrt(75)) (sqrt(3) + sqrt(75)). From here, recall how we multiply these kinds of brackets together: (a + b)(c + d) = ac + ad + bc + bd. So we have sqrt(3)*sqrt(3) + sqrt(3)*sqrt(75) + sqrt(75)*sqrt(3) + sqrt(75)sqrt(75) = 3 + sqrt(225) + sqrt(225) + 75 = 78 + 215 = 108.

CB
Answered by Callum B. Maths tutor

6224 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the line that passes through (2, 4) and (7, -11)


Work out the value of 125 to the power of -2/3.


The equation of line L1 is y = 3x-2 and the equation of line L2 is 3y-9x+5 = 0. Show that these two lines are parallel.


A shopkeeper compares the income from sales of a laptop in March and in April. The price in April was 1/5 more than in March. The number sold in April was 1/4 less than in March. By what fraction does income decrease from March to April?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning