Show that (sqrt(3) + sqrt(75))^{2} = 108

The key here is to simplify the left hand side. There are two different approaches to take here, one slightly faster but both perfectly legitimate. First approach: Remember the formula (a + b)^{2} = a^{2} + 2ab + b^{2}. Then (sqrt(3) + sqrt(75))^{2} = 3 + 2sqrt(3)sqrt(75) + 75 = 78 + 2sqrt(225) = 78 + 2*15 = 108. Second approach: This approach is effectively the same as the first but in slightly more steps (which should be easier in general). We can write the left hand side out in full as (sqrt(3) + sqrt(75)) (sqrt(3) + sqrt(75)). From here, recall how we multiply these kinds of brackets together: (a + b)(c + d) = ac + ad + bc + bd. So we have sqrt(3)*sqrt(3) + sqrt(3)*sqrt(75) + sqrt(75)*sqrt(3) + sqrt(75)sqrt(75) = 3 + sqrt(225) + sqrt(225) + 75 = 78 + 215 = 108.

Answered by Callum B. Maths tutor

4982 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A bag has 3 red balls and 5 green balls. I take out 2 balls, without replacing them. What is the probability of choosing at least one red ball? Give your answer to 3 decimal places.


The ratio of Adam's age to Bob's age is 1:2. In 12 years time, the ratio of their ages will be 3:5. Calculate their current ages.


A line passes through coordinates (-2,4) and (8,9). Does the point with coordinates (32,55) fall on this line?


Work out the value of 4a + 2b when a = 4 and b = 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences