Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1

NB.: Treat all log as log2 for purpose of formatting log(x) - log(z) = log(x/z) alog(b) = log(b^a) log((11y - 3)/3) - log(y^2) = 1 log((11y - 3)/3y^2) = 1 11y - 3 / 3y^2 = 2^1 11y - 3 = 6y^2 6y^2 - 11y + 3 = 0 (3y - 1) (2y - 3) = 0 y = 1/3 or 1.5

Answered by Shrinivas A. Maths tutor

4483 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 20x -x^(2) - 2x^(3). The curve has a stationary point at the point M where x = −2. Find the x coordinates of the other stationary point.


Is AB perpendicular to BC where A =(2,0,-1), B=(4,3,-6) and C = (9,3,-4)


The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences