Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1

NB.: Treat all log as log2 for purpose of formatting log(x) - log(z) = log(x/z) alog(b) = log(b^a) log((11y - 3)/3) - log(y^2) = 1 log((11y - 3)/3y^2) = 1 11y - 3 / 3y^2 = 2^1 11y - 3 = 6y^2 6y^2 - 11y + 3 = 0 (3y - 1) (2y - 3) = 0 y = 1/3 or 1.5

SA
Answered by Shrinivas A. Maths tutor

5229 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(A) express 4^x in terms of y given that 2^x = y. (B) solve 8(4^x ) – 9(2^x ) + 1 = 0


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


How do you prove by contradiction the irrationality of surds. Use sqrt 2 as an example.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning