Derive the quadratic equation.

So in order to derive the quadratic equation we need to start with a quadratic that can represent any quadratic equation. Lets start with ax2+bx+c=0.

We will use the completing the square method to solve this. First lets make sure the x2 term is all by itself with no coefficient by dividing through a so x2+(b/a)x+(c/a)=0.

Now lets complete the square: (x+(b/2a))2-(b/2a)2+(c/a)=0.

This looks pretty messy so lets rearrange so the x terms are on one side and expand the (b/2a)2 term: 

(x+(b/2a))2=(b2/4a2)-(c/a).

Now we can make the right hand side one big fraction by multiplying c by 4a so that the denominators are the same:

(x+(b/2a))2=(b2-4ac)/4a2

We can see the b2-4ac term already which is good. Now lets square root both sides so we can single out x. After that it is a simple matter of rearranging again (I can't write a square root or plus/minus sign here so I have skipped some steps).

HT
Answered by Harry T. Maths tutor

3645 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that angles A and B are such that, sec^2A-tanA = 13 and sinBsec^2B=27cosBcosec^2B


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


Use the geometric series formula to find the 9th term in this progression : 12 18 27...


How do you differentiate using the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning