Derive the quadratic equation.

So in order to derive the quadratic equation we need to start with a quadratic that can represent any quadratic equation. Lets start with ax2+bx+c=0.

We will use the completing the square method to solve this. First lets make sure the x2 term is all by itself with no coefficient by dividing through a so x2+(b/a)x+(c/a)=0.

Now lets complete the square: (x+(b/2a))2-(b/2a)2+(c/a)=0.

This looks pretty messy so lets rearrange so the x terms are on one side and expand the (b/2a)2 term: 

(x+(b/2a))2=(b2/4a2)-(c/a).

Now we can make the right hand side one big fraction by multiplying c by 4a so that the denominators are the same:

(x+(b/2a))2=(b2-4ac)/4a2

We can see the b2-4ac term already which is good. Now lets square root both sides so we can single out x. After that it is a simple matter of rearranging again (I can't write a square root or plus/minus sign here so I have skipped some steps).

Answered by Harry T. Maths tutor

2938 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I struggle with integration, and don't understand why we need to do it


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


Given that y=(4x-3)^3 x sin2x find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences