find dy/dx where y = a^x

First, we need to re-write it as e to the power something. The definition of log base e is that e^log(y) = y. We can put our expression into this equality too. So a^x = e^log(a^x), so we use log rules to bring the x down from a power to being at the front of the log, so a^x = e^(x*log(a)).

Now that we are differentiating something in the form e to the power something, we can use standard differentiation to carry it out. When y = e^bx, dy/dx = be^bx, and this is all we need now. So for us, y = e^( log(a) * x ). This means that dy/dx is log(a) * e^( log(a) * x ).

 

AS
Answered by Alastair S. Maths tutor

3302 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


How do I find a stationary point on a curve and work out if it is a maximum or minimum point?


What is the area under the graph of (x^2)*sin(x) between 0 and pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning