2x + y = 12. P = xy^2. Show that P = 4x^3 - 48x^2 + 144x

We want to make P = xy^2 into something more complicated, which only has Xs, and no Ys. 

Firstly, you need to remember that when there are two equations, the question will almost definitely involve substituting one into the other. In this question, it happens to be that that's all there is to it.

By making y the subject of one equation, we can eliminate it from another. In this case we want P = [complicated thing with no x], so we make y the subject of the other equation, to eliminate it from this one.

Making y the subject: 2x + y = 12 ----> y = 12-2x

Substitute that into P = xy^2:   P = x(12-2x)^2

                                  Expand      = x(144 + 4x^2 - 48x)

                                                    = 4x^3 - 48x^2 + 144x

JR
Answered by Jethro R. Maths tutor

3690 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


Figure 1 shows a sector AOB of a circle with centre O and radius r cm. The angle AOB is θ radians. The area of the sector AOB is 11 cm2 Given that the perimeter of the sector is 4 times the length of the arc AB, find the exact value of r.


When I try to integrate by parts, I end up in an infinite loop. Why is this, and how do you stop?


Is the trapezium rule an exact method of integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning