Find the turning points of the curve y = x^3 +5x^2 -6x +4

y= x3 +5x2 -6+4

dy/dx = 3x2 +10-6

at turning points dy/dx = 0 therefore 

3x2 +10-6 = 0

This quadratic is factorisable. When factorised you get:

(3-2)(+4) = 0

therefore = 2/3 and -4 at the turning points

to find the y co-ordinates, substitue these values of x into the original equation of y= x^3 +5x^2 -6+4

y = (-4)3 +5(-4)2 -6(-4) +4 = 44

y = (2/3)3 +5(2/3)2 -6(2/3) +4 = 68/27

thw turning points of the curve are at the points (-4,44) and (2/3,68/27)

  

 

AB
Answered by Arshan B. Maths tutor

19920 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation 3x^4/3-16y^3/4=32. By differentiating implicitly find dy/dx in terms of x and y. Hence find the gradient of the curve at the point (8,1).


Given y = 4x/(x^2 +5) find dy/dx, writing your answer as a single fraction in its simplest form


two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


How do you differentiate a^x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning