Find the turning points of the curve y = x^3 +5x^2 -6x +4

y= x3 +5x2 -6+4

dy/dx = 3x2 +10-6

at turning points dy/dx = 0 therefore 

3x2 +10-6 = 0

This quadratic is factorisable. When factorised you get:

(3-2)(+4) = 0

therefore = 2/3 and -4 at the turning points

to find the y co-ordinates, substitue these values of x into the original equation of y= x^3 +5x^2 -6+4

y = (-4)3 +5(-4)2 -6(-4) +4 = 44

y = (2/3)3 +5(2/3)2 -6(2/3) +4 = 68/27

thw turning points of the curve are at the points (-4,44) and (2/3,68/27)

  

 

Answered by Arshan B. Maths tutor

18877 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


If x^2 + 4x + 3xy + y^3 = 6, find the first derivative.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences