How would I solve the following equation d^2x/dt^2 + 5dx/dt + 6x = 0

Our given equation is d2x/dt2 + 5dx/dt + 6x = 0, which we need to recognise as a second order differential equation. Therefore we need to begin by solving the auxilary funtion m2+5m +6= 0. ( Side note: Most of the mathematical equations we solve are expressed in x and y, but in this equation it's expressed in terms of x and t, where x is the dependent variable). Solving the auxiliary funtion gives us values of -3&-2 for m. Because these are real values that are not equal to each other we can use the complimentary funtion y= Aect + Bedt where y is the dependent variable, t is our independent variable and A&B are constants of intergration. If we plug in our values the auxiliary funtion becaomes x = Ae-3t+Be-2t. Which is our final answer.

Related Further Mathematics GCSE answers

All answers ▸

Work out 7/(2x^2) + 4/3x as a single fraction in its simplest form.


Given f(x)= 8 − x^2, solve f(3x) = -28


Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


The equation 3x^2 – 5x + 4 = 0 has roots P and Q, find a quadratic equation with the roots (P + 1/2Q) and (Q + 1/2P)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences