Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3

y = (3x- 18)/x

The gradient of a tangent to a curve is equal to dy/dx 

However, we must simplify this equation before we can differentiate it;

y = 3x3 - 18/x = 3x3 - 18x-1

dy/dx = 3(3x2) - (-1)(18x-2)

= 9x2 + 18x-2 = 9x2 + 18/x2

When x = 3,

dy/dx = 9(9) + 18/9 = 83

Answered by Rachel O. Maths tutor

4035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I answer this question? Use factor theorem to show (x-2) is a factor of f(x) = 2x^3 -7x^2 +4x +4.


Curve C has equation 4x^2- y^3 - 4xy +2^y = 0 , point P (-2, 4) lies on C, find dy/dx at the point P


The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


Find the indefinite integral tan(5x)tan(3x)tan(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences