Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)

We know that 1. sin(a+b) = sin(a)cos(b)+sin(b)cos(a) and 2. sin(a-b) = sin(a)cos(b)-sin(b)cos(a) Add equations 1. and 2. sin(a+b)+sin(a-b) = 2sin(a)cos(b)+sin(b)cos(a)-sin(b)cos(a) = 2sin(a)cos(b) Let x=a+b and y=a-b, hence x+y=2a so a=(x+y)/2 and x-y=2b so b=(x-y)/2 Therefoe sin(x)+sin(y) = 2sin((x+y)/2)cos((x-y)/2)

Answered by Anna V. Maths tutor

31232 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate cos^2(x)


a circle c has the equation x^2 + y^2 -4x + 10y = k. find the center of te circle


Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.


Given that y= 5x^2 + 2x , find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences