Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)

We know that 1. sin(a+b) = sin(a)cos(b)+sin(b)cos(a) and 2. sin(a-b) = sin(a)cos(b)-sin(b)cos(a) Add equations 1. and 2. sin(a+b)+sin(a-b) = 2sin(a)cos(b)+sin(b)cos(a)-sin(b)cos(a) = 2sin(a)cos(b) Let x=a+b and y=a-b, hence x+y=2a so a=(x+y)/2 and x-y=2b so b=(x-y)/2 Therefoe sin(x)+sin(y) = 2sin((x+y)/2)cos((x-y)/2)

AV
Answered by Anna V. Maths tutor

33600 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate cos(x)sin^2(x)


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


Find all possible values of θ for tan θ = 2 sin θ with the range 0◦ ≤ θ ≤ 360◦


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences