On the line of centres between the Earth and the Moon, there is a point where the net gravitational force is zero. Given that the distance between the two is 385,000 km, and that the Earth has a mass 81x that of the Moon, how far is this point from Earth?

Here, we must consider Newton's Law of Universal Gravitation. This states that the gravitational force acting between two bodies is proportional to the masses of each body and inversely proportional to the square of the distance between them, F=Gm1m2/rAs the Earth is 81 times the mass of the moon, the distance of this point from the moon must be 1/811/2 = 1/9 that of the distance to Earth. This means that we are dealing with a ratio of 1/9 of our distances. We therefore take 385000 * 9/(9+1) to find the distance, which is equal to 346,500 km, or 347,000 km to 3 significant figures.

Answered by Phil R. Physics tutor

5554 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do capacitors work and what are its units?


2 Capacitors (c1 = 500mf) and (c2=300mf), are connected in parallel to a 10v d.c supply. Calculate the total capacitance of the circuit, and hence the total energy stored in the capacitors.


Electrons moving in a beam have the same de Broglie wavelength as protons in a separate beam moving at a speed of 2.8 × 10^4 m/s . What is the speed of the electrons?


what depends if the universe is expanding or not


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences