On the line of centres between the Earth and the Moon, there is a point where the net gravitational force is zero. Given that the distance between the two is 385,000 km, and that the Earth has a mass 81x that of the Moon, how far is this point from Earth?

Here, we must consider Newton's Law of Universal Gravitation. This states that the gravitational force acting between two bodies is proportional to the masses of each body and inversely proportional to the square of the distance between them, F=Gm1m2/rAs the Earth is 81 times the mass of the moon, the distance of this point from the moon must be 1/811/2 = 1/9 that of the distance to Earth. This means that we are dealing with a ratio of 1/9 of our distances. We therefore take 385000 * 9/(9+1) to find the distance, which is equal to 346,500 km, or 347,000 km to 3 significant figures.

PR
Answered by Phil R. Physics tutor

7051 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A gold leaf electroscope with a zinc plate top is charged by briefly connecting it to the negative electrode of a high-voltage supply. Explain how the gold leaf will appear and how the leaf can be caused to drop again.


Explain how a stationary wave is produced when a string fixed at both ends is plucked


Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


Why is gravitational potential energy negative?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning