Given that y=(4x+1)^3sin 2x , find dy/dx .

So this function is the product of two functions of x, so we use the product rule to differentiate it. The rule states if y=uv, dy/dx=(du/dx)v+(dv/dx)u. In this function we assign u=(4x+1)3 and v=sin2x. When we differentiate u we need to use the chain rule, as there is a function within a function, which gives us (3(4x+1)2)x4 which is equal to 12(4x+1)2. When we differentiate v we get 2cos2x, again using chain rule. So we plug these values into the formula which gives us dy/dx=12(4x+1)2Sin2x + 2(4x+1)3Cos2x

TF
Answered by Tom F. Maths tutor

6886 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the graph f(x) passes through the point (2,3) and that f'(x)=6x^2-14x+3, find f(x).


How would I find a the tangent of a point on a line?


How do I differentiate something of the form a^x?


A circle has equation x^2 + y^2 - 8x - 10y + 5 = 0, find its centre and radius


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning