Integrate dy/dx = 2x/(x^2-4)

Integrate dy/dx = 2x/(x2-4).

We can answer this question using integration by substitution, where we set u = something in terms of x.

In this case we are going to set u = x2-4 (the denominator).

When we differentiate this we get du/dx = 2x, therefore dx = 1/(2x) du.

If we substitute this back into the original equation: 2x/(x^2-4) dx = 2x/u 1/(2x) du.

The 2x cancels with the 1/(2x) leaving the integral of 1/u du.

Using our knowledge of integrals this equals ln u (the natural logarithm - log base e).

We now substitute x2 - 4 back in for u leaving y = ln(x2 - 4), the solution.

WR
Answered by William R. Maths tutor

10610 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the integral: int(x^3+4x^2+sinx)dx.


How can we calculate the derivative of function f(x)= (x+2)/(x-1)?


∫(1 + 3√x + 5x)dx


In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences