Integrate dy/dx = 2x/(x^2-4)

Integrate dy/dx = 2x/(x2-4).

We can answer this question using integration by substitution, where we set u = something in terms of x.

In this case we are going to set u = x2-4 (the denominator).

When we differentiate this we get du/dx = 2x, therefore dx = 1/(2x) du.

If we substitute this back into the original equation: 2x/(x^2-4) dx = 2x/u 1/(2x) du.

The 2x cancels with the 1/(2x) leaving the integral of 1/u du.

Using our knowledge of integrals this equals ln u (the natural logarithm - log base e).

We now substitute x2 - 4 back in for u leaving y = ln(x2 - 4), the solution.

Answered by William R. Maths tutor

9605 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


How do we know which formulas we need to learn for the exam?


Where does integration by parts come from?


A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences