Integrate dy/dx = 2x/(x^2-4)

Integrate dy/dx = 2x/(x2-4).

We can answer this question using integration by substitution, where we set u = something in terms of x.

In this case we are going to set u = x2-4 (the denominator).

When we differentiate this we get du/dx = 2x, therefore dx = 1/(2x) du.

If we substitute this back into the original equation: 2x/(x^2-4) dx = 2x/u 1/(2x) du.

The 2x cancels with the 1/(2x) leaving the integral of 1/u du.

Using our knowledge of integrals this equals ln u (the natural logarithm - log base e).

We now substitute x2 - 4 back in for u leaving y = ln(x2 - 4), the solution.

WR
Answered by William R. Maths tutor

11157 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between differentiation and integration, and why do we need Calculus at all?


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


Differentiate y^3 + 3y^2 + 5


Solve the simultaneous equations y + 4x + 1 = 0 and y^2 + 5x^2 + 2x = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning