Solve for x: 2x+3+((4x-1)/2)=10

Solve for x: 2x+3+((4x-1)/2)=10 First of all, move all the values on the left-hand side of the equation that are not in brackets over to the right-hand side of the equation so as to make the fraction (in brackets) more easy to deal with. In order to do this you must perform the same calculation (that would remove these values on the left) to both sides of the equation (in this case subtract 2x and 3): (4x-1)/2= 10-2x-3 Repeat this concept by mulitplying both sides by 2 in order to get rid of the fraction: 4x-1= 20-4x-6 Now that the fraction is gone, it is a much easier problem to solve. Finish by bringing all multiples of x to the same side of the equation and then simplify so that it is clear what a single x value is equal to: 8x-1= 20-6 8x= 15 x= 15/8

LH
Answered by Luke H. Maths tutor

3353 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Complete Question won't fit here. Please see Explanation. Thanks.


Solve the simultaneous equations. 5x+y=21, x-3y=9.


expand the brackets (x+5)(x+3) furthermore what are the two values of x


There are 200 students in Year 10 110 are boys. There are 250 students in Year 11 140 are boys. Which year has the greater proportion of boys? (Taken from Nov 2014 AQA Unit 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences