What is a derivative?

The derivative of a function f(x) is a measure of how the function f changes as its variable x changes. You have already met an example of derivatives: the gradient, m, measuring the rate of change of f(x) and x.

Indeed, to find m, you start by considering two points x1 and x2. You find their difference, Delta x:

Delta x = x2 – x1.

Then, you find the value of the function f corresponding to the two points and take their difference, Delta f(x):

Delta f(x) = f(x2) – f(x1).

Finally, to find m, you compute the ratio of the two Deltas:

M = delta f(x) / delta x.

When looking for m, we consider finite distances between any two given points, in the sense that the difference between x1 and x2 is finite. On the other hand, a derivative considers infinitesimally small distances between any two given points. Indeed, when writing down a derivative, we swap the symbol Delta with d, obtaining df(x)/dx. Considering infinitesimally small distances makes the derivative an extremely precise tool for understanding the behaviour of a function.

MD
Answered by Marta D. Maths tutor

3622 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that tan(x) + cot(x) = 2cosec(2x)


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Find the stable points of the following function, determine wether or not they are maxima or minima. y= 5x^3 +9x^2 +3x +2


Use the substitution u = 2^x to find the exact value of ⌠(2^x)/(2^x +1)^2 dx between 1 and 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning