What is a derivative?

The derivative of a function f(x) is a measure of how the function f changes as its variable x changes. You have already met an example of derivatives: the gradient, m, measuring the rate of change of f(x) and x.

Indeed, to find m, you start by considering two points x1 and x2. You find their difference, Delta x:

Delta x = x2 – x1.

Then, you find the value of the function f corresponding to the two points and take their difference, Delta f(x):

Delta f(x) = f(x2) – f(x1).

Finally, to find m, you compute the ratio of the two Deltas:

M = delta f(x) / delta x.

When looking for m, we consider finite distances between any two given points, in the sense that the difference between x1 and x2 is finite. On the other hand, a derivative considers infinitesimally small distances between any two given points. Indeed, when writing down a derivative, we swap the symbol Delta with d, obtaining df(x)/dx. Considering infinitesimally small distances makes the derivative an extremely precise tool for understanding the behaviour of a function.

Answered by Marta D. Maths tutor

3152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is ln(10)-ln(5)?


What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.


A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences