A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.

To find the derivative of this, we must differentiate each term with respect to x. This implies d/dx(y^3+2xy+x^2-5=0). We can differentiate each term seperately so d/dx(y^3+2xy+x^2-5=0) is equal to d/dx(y^3) + d/dx(2xy) +d/dx(x^2) - d/dx(5) = 0. Taking each term seperately, d/dx(y^3) = (dy/dx)(d/dy(y^3) = dy/dx(3y^2), d/dx(2xy) = 2y+dy/dx(d/dy(2xy)) = 2y+2x(dy/dx), d/dx(x^2) = 2x, d/dx(5) = 0. Recombining we get dy/dx(3y^2)+2y+dy/dx(2x)+2x=0. Rearranging and factorising gives us dy/dx(3y^2+2x)=-(2x+2y). Dividing by 3y^2+2x then gives us dy/dx = -(2x+2y)/3y^2+2x. ARQ. 

MC
Answered by Matthew C. Maths tutor

5091 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).


Why do we need the constant of integration?


Why does the chain rule work?


Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning