How do you differentiate using the chain rule?

In order to differentiate using the chain rule,you first need to know the chain rule. Chain rule : dy/dt * dt/dx = dy/dx.

It is basic multiplication to get rid of the common factor of 'dt' in both equations to give dy/dx.

You would begain by differentiating the general y = something t and x = something t. This will give you the dy/dt and dx/dt. You would then find th recepricol of dx/dt to give dt/dx. Then multiply with the dy/dt you found before. This is known as the chain rule. 

Answered by Niha G. Maths tutor

2753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


How do I remember the coefficients of a Taylor expansion?


Given that y=(sin4x)(sec3x), use the product rule to find dy/dx


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences