Solve the equation 3x^2/3 + x^1/3 − 2 = 0

Let u = x^1/3 

The equation can therefore be written as:

3u^2+u-2=0

This can be factorised to:

(3u-2)(u+1)+0 

Therefore: u = 2/3 or u = -1 OR x^1/3 = 2/3 or x^1/3 = -1

So: x = (2/3)^3 or x = (-1)^3 

x = 8/27 or x = -1

NH
Answered by Namita H. Maths tutor

9682 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Complete the indefinite integral of 3x^2 + 4x -2/(x^2)


How do you integrate ln(x) with respect to x?


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


write 2(sin^2(x)- cos^2(x)) + 6 sin(x) cos(x) in terms of cos(2x) and sin(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning