Solve the equation 3x^2/3 + x^1/3 − 2 = 0

Let u = x^1/3 

The equation can therefore be written as:

3u^2+u-2=0

This can be factorised to:

(3u-2)(u+1)+0 

Therefore: u = 2/3 or u = -1 OR x^1/3 = 2/3 or x^1/3 = -1

So: x = (2/3)^3 or x = (-1)^3 

x = 8/27 or x = -1

NH
Answered by Namita H. Maths tutor

8945 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass M is being suspended by two ropes from a horizontal ceiling. Rope A has a tension of 15N at 30 deg and rope B has a tension of xN at 45 deg, find M assuming the particle remains stationary.


The equation (t – 1)x^2 + 4x + (t – 5) = 0, where t is a constant has no real roots. Show that t satisfies t2–6t+1>0


The curve C has equation: (x-y)^2 = 6x +5y -4. Use Implicit differentiation to find dy/dx in terms of x and y. The point B with coordinates (4, 2) lies on C. The normal to C at B meets the x-axis at point A. Find the x-coordinate of A.


Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences