Solve the equation 3x^2/3 + x^1/3 − 2 = 0

Let u = x^1/3 

The equation can therefore be written as:

3u^2+u-2=0

This can be factorised to:

(3u-2)(u+1)+0 

Therefore: u = 2/3 or u = -1 OR x^1/3 = 2/3 or x^1/3 = -1

So: x = (2/3)^3 or x = (-1)^3 

x = 8/27 or x = -1

Answered by Namita H. Maths tutor

8096 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the derivative of f(x) = x^3 + 2x^2 - 5x - 6. Find all stationary points of the function.


Find the determinant of a 2*2 matrix.


Write 5x^2 + 30x + 36 in the form 5(x+A)^2+B where A and B are integers to be found.Then write the equation of symmetry for the graph of 5x^2 + 30x + 36


Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences