Express f(x) = x^2 + 5x + 9 in the form (x + a)^2 + b, stating the values of a and b.

The question asks you to complete the square on the function f(x). First, we split the function:

f(x) = (x^2 + 5x) + 9

And recognise that we need the form (x^2 + 2k + k^2). Identifying 2k = 5, we have that k = 5/2:

f(x) = (x^2 + 2*(5/2)x + (5/2)^2) + 9 - (5/2)^2

with the last term being due to the addition of (5/2)^2: completing the square. Resolving the expression:

f(x) = (x + 5/2)^2 + 11/4, with a = 5/2 and b = 11/4. Expanding the brackets again reforms the original expression.

LB
Answered by Lee B. Maths tutor

7187 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand (x-3)(x+7)


Solve: x^2 + x - 12 = 0


If x:y = 7:4 and x+y = 88 , work out the value of x–y.


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Work out the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning