I can differentiate exponentials (e^x), but how can I differentiate ln(x)?

[Differentiate y = ln(x)] This is an example of many situations in maths where you need to solve something that is similar to what you can solve, but not in its current form. A good idea, then, is to see what you can do to get into a form where you can use what you already know. Consider: y = ln(x) e^y = x This is something that you can differentiate: dx/dy = e^y Then, get this back into the form that you want: dx/dy = x dy/dx = 1/x

Answered by Adam L. Maths tutor

2892 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution to the differential equation dy/dx = y/(x+1)(x+2)


How do I remember the common values of cosx, sinx and tanx?


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Differentiate y = x^3− 5x^2 + 3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences