How can we calculate the sinus of 120°?

We can observe that120° represents the sum of two common angles: 30° and 90°. So we can rewrite sin(120°) as sin(30°+90°). Now we are going to use this trigonometric formula in order to calculate the sinuns: sin(A+B)=sin A cos B + cos A sin B. In our situation: sin(30°+90°)= sin30° x cos90° + cos30° x sin90°, where sin30° = 1/2, cos30°=sqrt(3)/2 and sin90°= 1, cos 90°= 0=> sin(30°+90°) = 1/2 x 0 + sqrt(3)/2 x 1= 0 +  sqrt(3)/2= sqrt(3)/2.

Answered by Monica M. Maths tutor

5488 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the square root of 25?


there are 11 sweets in a box four are soft centred and seven hard centred sweets two sweets are selected at random a)calculate the probability that both sweets are hard centred, b) one sweet is soft centred and one sweet is hard centred


If 4x + 3y = 4 and x + 2y = 2 what are the values of x and y ?


How do you find the original price of a sale item when a percentage decrease has been applied?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences