How can we calculate the sinus of 120°?

We can observe that120° represents the sum of two common angles: 30° and 90°. So we can rewrite sin(120°) as sin(30°+90°). Now we are going to use this trigonometric formula in order to calculate the sinuns: sin(A+B)=sin A cos B + cos A sin B. In our situation: sin(30°+90°)= sin30° x cos90° + cos30° x sin90°, where sin30° = 1/2, cos30°=sqrt(3)/2 and sin90°= 1, cos 90°= 0=> sin(30°+90°) = 1/2 x 0 + sqrt(3)/2 x 1= 0 +  sqrt(3)/2= sqrt(3)/2.

Answered by Monica M. Maths tutor

5383 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

​What's the difference between the mean, median and mode? Why are there so many different types of average?!


multiply out (2x-4)(x-2) and simplify.


Circle with centre C, and points A,B,D and E on the circumference of the circle. BD is the diameter of the circle. Angle CDA is 18 deg and angle AED is 31 deg. Find angle EDA.


Solve the following simultaenous equations


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences