How can we calculate the sinus of 120°?

We can observe that120° represents the sum of two common angles: 30° and 90°. So we can rewrite sin(120°) as sin(30°+90°). Now we are going to use this trigonometric formula in order to calculate the sinuns: sin(A+B)=sin A cos B + cos A sin B. In our situation: sin(30°+90°)= sin30° x cos90° + cos30° x sin90°, where sin30° = 1/2, cos30°=sqrt(3)/2 and sin90°= 1, cos 90°= 0=> sin(30°+90°) = 1/2 x 0 + sqrt(3)/2 x 1= 0 +  sqrt(3)/2= sqrt(3)/2.

MM
Answered by Monica M. Maths tutor

7106 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?


Rationalise the denominator of 1/(4 + sqrt(3))


Show that ((√ 18 + √ 2)^2)/(√8 - 2) can be written in the form a(b + 2) where a and b are integers.


Solve these simultaneous equations. 5x + 2y = 20 and x + 4y = 13.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning