How can we calculate the sinus of 120°?

We can observe that120° represents the sum of two common angles: 30° and 90°. So we can rewrite sin(120°) as sin(30°+90°). Now we are going to use this trigonometric formula in order to calculate the sinuns: sin(A+B)=sin A cos B + cos A sin B. In our situation: sin(30°+90°)= sin30° x cos90° + cos30° x sin90°, where sin30° = 1/2, cos30°=sqrt(3)/2 and sin90°= 1, cos 90°= 0=> sin(30°+90°) = 1/2 x 0 + sqrt(3)/2 x 1= 0 +  sqrt(3)/2= sqrt(3)/2.

MM
Answered by Monica M. Maths tutor

5998 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angled triangle has a base of 5 cm, a height of 12 cm. Find the length of the hypotenuse.


expand y=(x+1)(x+2) and find what are the coordinates for x intercepts?


2 sides of a right-angled triangle are 5cm and 6cm. Calculate the length of the hypotenuse.


Work out the integer values that satisfy: x^2−7 x+ 11<0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences