Differentiate 3x^(2)+xy+y^(2)=12 with respect to x

this is implicit differentiation. We start by differentiating 3x^(2) to get 6x (lower the power by 1, multiply by the original power). For xy, we use the product rule, giving us y + (x)dy/dx (this is the implicit part). y^(2) is differentiated to 2y*dy/dx, and 12 on the RHS just becomes 0. We want to get dy/dx on its own so we first collect like terms on one side, factorise, and then divide. dy/dx(x+2y)=-6x-y, hence dy/dx=-(6x+y)/(x+2y)

NL
Answered by Noyonika L. Maths tutor

4380 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


Find the equation to the tangent to the curve x=cos(2y+pi) at (0, pi/4)


How do you form a Cartesian equation from two parametric equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning