Differentiate 3x^(2)+xy+y^(2)=12 with respect to x

this is implicit differentiation. We start by differentiating 3x^(2) to get 6x (lower the power by 1, multiply by the original power). For xy, we use the product rule, giving us y + (x)dy/dx (this is the implicit part). y^(2) is differentiated to 2y*dy/dx, and 12 on the RHS just becomes 0. We want to get dy/dx on its own so we first collect like terms on one side, factorise, and then divide. dy/dx(x+2y)=-6x-y, hence dy/dx=-(6x+y)/(x+2y)

NL
Answered by Noyonika L. Maths tutor

4316 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to find flight time/distance and greatest hight of projectiles?


differentiate with respect to x: (x^3)(e^x)


Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning