Differentiate 3x^(2)+xy+y^(2)=12 with respect to x

this is implicit differentiation. We start by differentiating 3x^(2) to get 6x (lower the power by 1, multiply by the original power). For xy, we use the product rule, giving us y + (x)dy/dx (this is the implicit part). y^(2) is differentiated to 2y*dy/dx, and 12 on the RHS just becomes 0. We want to get dy/dx on its own so we first collect like terms on one side, factorise, and then divide. dy/dx(x+2y)=-6x-y, hence dy/dx=-(6x+y)/(x+2y)

NL
Answered by Noyonika L. Maths tutor

4355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


How do you know how many roots a quadratic equation has?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning