Differentiate 3x^(2)+xy+y^(2)=12 with respect to x

this is implicit differentiation. We start by differentiating 3x^(2) to get 6x (lower the power by 1, multiply by the original power). For xy, we use the product rule, giving us y + (x)dy/dx (this is the implicit part). y^(2) is differentiated to 2y*dy/dx, and 12 on the RHS just becomes 0. We want to get dy/dx on its own so we first collect like terms on one side, factorise, and then divide. dy/dx(x+2y)=-6x-y, hence dy/dx=-(6x+y)/(x+2y)

NL
Answered by Noyonika L. Maths tutor

4304 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I determine the stationary points of a curve and their nature?


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


Integrate sin^2(x) with respect to x


Draw y + 14 = x ( x - 4 ) and label all points of intersection with axes.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning